

LED Package and Luminaire Efficacy Evaluation for Emerging SSL Technologies

January 29, 2014

Paul Fini, CREE Inc.

Tracking LED Efficacy Progress

 DOE has used current density (J, A/cm²) as the means by which LED efficacy (η) is tracked

TABLE 4.1 PROGRESS PROJECTIONS FOR LED PACKAGE EFFICACY (LM/W)

Package Type	2012	2013	2015	2020	Goal
Cool-White (Color-mixed)	150	164	190	235	266
Cool-White (Phosphor)	147	157	173	192	199
Warm-White (Color-mixed)	113	129	162	224	266
Warm-White (Phosphor)	112	126	150	185	199

Notes:

- Projections for cool-white packages assume CCT=4746-7040 K and CRI >70, while projections for warm- white packages assume CCT=2580-3710 K and CR I>80. All efficacy projections assume that packages are measured at 25 °C with a drive current density of 35 A/cm².
- Good: all η results reported at same value of 35 A/cm²
- Not so good: J @ RT isn't relevant to many systems

Package evolution requires new metric(s)

 The proliferation of multi-chip, high-V packages requires detailed analysis of chip size, layout

Chip sizes?
of strings?
Serial?
Parallel?

- DOE MYPP addresses "color mixed" hybrid chip packages, but evaluation of J becomes more complex in this case
 - Different chip types on different strings

of strings?Chip sizes?V_f / I_f combos

Package evolution requires new metric(s)

- Consider combined <u>power</u> density: W/cm² or W/mm²
 - e.g. baseline: 1 W/mm² (~35 A/cm² for typical V_f)
 - Sum input powers of all chips/strings
- Use package substrate area or area under the lens instead of chip area?
 - Reflects trend of shrinking package sizes @ similar chip size

- ➤ Net effect: treat package as 'black box' that has electrical power in and optical/thermal power out
 - After all, this is what EQE addresses!

Package evolution requires new metric(s)

- > Alternative: focus on \$/LPW
 - Still "keeps manufacturers honest" if street prices are used
 - Recognizes falling chip costs & shrinking non-chip package BOM

Complementary to DOE roadmap for \$/klm:

TABLE 2.4 SUMMARY OF LED PACKAGE PRICE AND PERFORMANCE PROJECTIONS

Metric	2012	2013	2015	2020	Goal
Cool-White Efficacy (lm/W)	150	164	190	235	266
Cool-White Price (\$/klm)	6	4	2	0.7	0.5
Warm-White Efficacy (lm/W)	113	129	162	224	266
Warm-White Price (\$/klm)	7.9	5.1	2.3	0.7	0.5

Note: Projections for cool-white packages assume CCT=4746-7040 K and CRI >70, while projections for warm-white packages assume CCT=2580-3710 K and CRI >80. All efficacy projections assume that packages are measured at 25 °C with a drive current density of 35 A/cm².

Component vs. System Efficacy

- How "important" is component efficacy?
 - > Depends on system requirements: space, optical, thermal, cost

MR16

Small # of high-P packages @ high T

Troffer

Large # of low-P packages @ low T

- In many cases: use more, cheaper, smaller packages at lower J
- System cost-normalized efficacy is the focus!
 This is what the customer cares about, and it drives adoption

Summary

- Current density @ RT is a useful, though limited, metric for LED efficacy evaluation
- Consider input power density as alternative, on either a chip or package area basis, at elevated T
- Focus on LED <u>\$/LPW</u>, and how it serves <u>system</u> needs
- <u>System</u> normalized efficacy (\$/LPW) is the focus, regardless of LED type or number
 - Customer doesn't care what's under the hood!
 - > Cost-normalized efficacy is an adoption driver